

medium cut depth

maximum cut depth (section)

[handy functional model for exhibition uses]

Contact

Prof. Dr.-Ing. J.H. Weychardt Head of mechanical design

University of applied sciences Kiel, Dept. of mechanical engineering

Grenzstraße 3, D-24149 Kiel

Jan.Henrik.Weychardt@FH-Kiel.de **Phone** 0049 (0)431-210-2623 **Fax** 0049 (0)431-210-6-2623

www.fh-kiel.de/cleanematics

CLEANEMATICS

kinematics for clean circular saws

- clean edges, clean air from do-it-yourself applications to industrial sawing plants

[handy functional model for exhibition uses, 20190520]

Patent pended

Problem

The saw blade 1 with its teeth causes cutting pressure p_e in the work piece 2

The surface of the work piece cannot withstand the cutting pressure – excess removals $\frac{1}{2}$ on the edges result.

Initial Idea

Two rollers $\bf 3$ on either side of the saw blade on the surface of the work piece cause Hertzian stress $\bf p_H$ in it compensating the cutting pressure and effect clean edges.

The foot line **FL** of the rollers should be placed near the section line **SL** of the saw blade. The space **SP** between the rollers and the saw blade should be near zero.

A swing arm 4 with the length R – the radius of the saw blade - is linked in the distance r – the radius of the rollers - above it.

Pleasant Side Effect

Due to lack of space it is replaced by a four bar linkage. These kinematics cause that the tangential velocity $\mathbf{v}_{\mathbf{t}}$ of the chips is always perpendicularly orientated to the swing arms.

Therefore the chips can be caught with a maximum of kinetic energy in a hood that is fixed e.g. on a swing arm.

THE EFFECT IS CLEAN AIR.

